Data Science / ML engineer - Manager

Insights & Analysis


Bengaluru

About the job

Key Responsibilities:

1. Data Engineering & Pipeline Development

  • Design, build, and maintain scalable ELT pipelines for ingesting, transforming, and processing large-scale marketing campaign data.
  • Ensure high data quality, integrity, and governance using orchestration tools like Apache Airflow, Google Cloud Composer, or Prefect.
  • Optimize data storage, retrieval, and processing using BigQuery, Dataflow, and Spark for both batch and real-time workloads.
  • Implement data modeling and feature engineering for ML use cases.

2. Machine Learning Model Development & Validation

  • Develop and validate predictive and prescriptive ML models to enhance marketing campaign measurement and optimization.
  • Experiment with different algorithms (regression, classification, clustering, reinforcement learning) to drive insights and recommendations.
  • Leverage NLP, time-series forecasting, and causal inference models to improve campaign attribution and performance analysis.
  • Optimize models for scalability, efficiency, and interpretability.

3. MLOps & Model Deployment

  • Deploy and monitor ML models in production using tools such as Vertex AI, MLflow, Kubeflow, or TensorFlow Serving.
  • Implement CI/CD pipelines for ML models, ensuring seamless updates and retraining.
  • Develop real-time inference solutions and integrate ML models into BI dashboards and reporting platforms.

4. Cloud & Infrastructure Optimization

  • Design cloud-native data processing solutions on Google Cloud Platform (GCP), leveraging services such as BigQuery, Cloud Storage, Cloud Functions, Pub/Sub, and Dataflow.
  • Work on containerized deployment (Docker, Kubernetes) for scalable model inference.
  • Implement cost-efficient, serverless data solutions where applicable.

5. Business Impact & Cross-functional Collaboration

  • Work closely with data analysts, marketing teams, and software engineers to align ML and data solutions with business objectives.
  • Translate complex model insights into actionable business recommendations.
  • Present findings and performance metrics to both technical and non-technical stakeholders.

Qualifications & Skills:

Educational Qualifications:

 - Bachelor’s or Master’s degree in Computer Science, Data Science, Machine Learning, Artificial Intelligence, Statistics, or a related field.
 - Certifications in Google Cloud (Professional Data Engineer, ML Engineer) is a plus.

Must-Have Skills:

 - Experience: 5-10 years with the mentioned skillset & relevant hands-on experience

 - Data Engineering: Experience with ETL/ELT pipelines, data ingestion, transformation, and orchestration (Airflow, Dataflow, Composer).
 - ML Model Development: Strong grasp of statistical modeling, supervised/unsupervised learning, time-series forecasting, and NLP.
 - Programming: Proficiency in Python (Pandas, NumPy, Scikit-learn, TensorFlow/PyTorch) and SQL for large-scale data processing.
 - Cloud & Infrastructure: Expertise in GCP (BigQuery, Vertex AI, Dataflow, Pub/Sub, Cloud Storage) or equivalent cloud platforms.
 - MLOps & Deployment: Hands-on experience with CI/CD pipelines, model monitoring, and version control (MLflow, Kubeflow, Vertex AI, or similar tools).
 - Data Warehousing & Real-time Processing: Strong knowledge of modern data platforms for batch and streaming data processing.

Nice-to-Have Skills:

 - Experience with Graph ML, reinforcement learning, or causal inference modeling.
 - Working knowledge of BI tools (Looker, Tableau, Power BI) for integrating ML insights into dashboards.
 - Familiarity with marketing analytics, attribution modeling, and A/B testing methodologies.
 - Experience with distributed computing frameworks (Spark, Dask, Ray).

Vorsicht vor Job-Betrug

Leider gibt es immer wieder Betrüger, die gezielt Jobsuchende ansprechen. Bitte sei vorsichtig. Alle offiziellen Mitteilungen im Bewerbungsprozess kommen ausschließlich von einem Mitglied des dentsu-Rekrutierungsteams über eine offizielle E-Mail-Adresse (z.B. @dentsu.com oder @merkle.com). Wir werden dich niemals auffordern, Geld oder Gutscheine zu senden, um eine Stelle zu erhalten. Falls du den Verdacht hast, Opfer eines Betrugs zu sein, melde dies bitte umgehend deiner Bank, der Polizei oder einer Betrugsstelle. Du kannst den Vorfall auch direkt bei uns unter jobfraud@dentsu.com melden, damit wir entsprechende Maßnahmen ergreifen können. Bitte beachte, dass Merkle und dentsu nicht für Verluste verantwortlich sind, die durch diese Betrügereien entstehen. Sei stets vorsichtig und überprüfe die Echtheit von Jobangeboten oder Nachrichten, die du erhältst.